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The Standard Model Flavor Structure

quantum numbers, are very heavy. This solution is theoretically unappealing and largely
non-testable. A more appealing scenario is to assume that the new flavor-changing cou-
plings appearing in SM extensions are suppressed by some symmetry principle. The most
restrictive and predictive symmetry principle of this type is the so-called Minimal Flavor
Violation (MFV) hypothesis [1, 2, 3]: the assumption that the SM Yukawa couplings are
the only sources of quark-flavor symmetry breaking. In this case all the cancellations
that render FCNC automatically small in the SM apply just as well to the new degrees
of freedom, allowing for very reasonable mass scales of the new particles. Interestingly,
the MFV hypothesis can be formulated in a very general way in terms of an effective
field theory [3], without the need of specifying the nature of the new degrees of freedom.
In a theory where the new degrees of freedom also carry lepton flavor quantum numbers,
it is natural to expect that a similar mechanism occurs also in the lepton sector.

In this paper we extend the notion of MFV to the lepton sector. In other words,
we define and analyze a consistent class of SM extensions where the sources of LFV are
linked in a minimal way to the known structure of the neutrino and charged-lepton mass
matrices. This allows us to address in a general way several interesting questions. In
particular, we shall analyze the general requirements about the scale of new physics under
which we can expect observable effects in low-energy rare LFV processes, such as µ → eγ
and µ-to-e conversion in nuclei, without requiring the existence of new uncontrollable
sources of lepton flavor mixing. We shall also identify some model-independent relations
among different LFV observables which could allow to falsify this general hypothesis
about the flavor structure of physics beyond the SM.

The large difference between charged lepton and neutrino masses is naturally at-
tributed to the breaking of total lepton number. This assumption has very important
consequences to estimate the overall size of the LFV terms. As we shall show, only
by decoupling the mechanisms of lepton flavor mixing and lepton number violation can
we generate sizable LFV amplitudes in the charged-lepton sector. Since lepton flavor
and lepton number correspond to two independent symmetry groups, this decoupling
can naturally be implemented in an effective field theory approach with the minimal
particle content, namely without introducing right-handed neutrino fields. However, in
most explicit SM extensions this result is achieved by means of the see-saw mechanism
with heavy right-handed neutrinos. For this reason, we shall consider two main possi-
bilities in order to define the minimal sources of flavor symmetry breaking in the lepton
sector: i) a scenario without right-handed neutrinos, where the (left-handed) Majorana
mass matrix is the only irreducible source of flavor symmetry breaking; ii) a scenario
with right-handed neutrinos, where the Yukawa couplings define the irreducible sources
of flavor symmetry breaking and the (right-handed) Majorana mass matrix has a trivial
flavor structure.

2 Minimal breaking of the lepton flavor symmetry

In the absence of Yukawa couplings, the flavor symmetry of the quark sector of the SM
would be SU(3)Q × SU(3)U × SU(3)D corresponding to individual rotations of the Qi

L,
ui

R and di
R fields (the left-handed quark doublet and the two right-handed quark singlets)

2• Accidental global flavor symmetries in the quark and lepton sectors are 
broken by the Yukawa matrices via the Higgs Mechanism

for i = 1, 2, 3. Models with MFV have only two independent sources of breaking of this
group, namely the two Yukawa couplings λU and λD. Each of them breaks the symmetry
in a specific way: in the spurion sense, λU transforms as a (3, 3̄, 1) while λD as a (3, 1, 3̄).
In MFV models any higher dimension operator that describes long distance remnants
of very short distance physics must be invariant under the full flavor symmetry group
when the couplings λU and λD are taken to transform as spurions as above [3].

In order to define a similar minimal flavor violating structure for the leptons, we first
need to specify the field content of the theory in the lepton sector. As anticipated, we
shall consider two cases:

1. Minimal field content: three left-handed lepton doublets Li
L and three right-handed

charged lepton singlets ei
R (SM field content). In this case the lepton flavor sym-

metry group is
GLF = SU(3)L × SU(3)E . (1)

The lepton sector is also invariant under two U(1) symmetries, which can be iden-
tified with total lepton number, U(1)LN, and the weak hypercharge.

2. Extended field content: three right-handed neutrinos, νi
R, in addition to the SM

fields. In this case the field content of the lepton sector is very similar to that of
the quark sector, with a maximal flavor group GLF × SU(3)νR

.

In the following we shall define separately the assumptions of Minimal Lepton Flavor
Violation (MLFV) in these two cases.

2.1 Minimal Field Content

In this case the minimal choice for the neutrino mass matrix is a left-handed Majorana
mass term transforming as (6, 1) under GLF. Because of the SU(2)L gauge symmetry, this
mass term cannot be generated by renormalizable interactions. Moreover, the absence
of right-handed neutrino fields requires the breaking of total lepton number. We define
the MLFV hypothesis in this case as follows:

1. The breaking of the U(1)LN is independent from the breaking of the lepton flavor
symmetry (GLF) and is associated to a very high scale ΛLN.

2. There are only two irreducible sources of lepton-flavor symmetry breaking, λij
e and

gij
ν , defined by1

LSym.Br. = −λij
e ēi

R(H†Lj
L) −

1

2ΛLN
gij

ν (L̄ci
Lτ2H)(HT τ2L

j
L) + h.c. (2)

→ −vλij
e ēi

Rej
L −

v2

2ΛLN
gij

ν ν̄ci
L νj

L + h.c. (3)

The smallness of the neutrino mass is attributed to the smallness of v/ΛLN, while
gij

ν can have entries of O(1) as in the standard see-saw mechanism.
1 Throughout this paper we use four-component spinor fields, and ψc = −iγ2ψ∗ denotes the charge

conjugate of the field ψ. We also use v = ⟨H0⟩ ≃ 174 GeV.
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 Quark sector

 Lepton sector

SU(3) SU(2)L U(1)Y

Qi
L =

(

uL

dL

) (

cL

sL

) (

tL
bL

)

3 2 1

6

(uc)i
L = (uc)L (cc)L (tc)L 3̄ 1 −2

3

(dc)i
L = (dc)L (sc)L (bc)L 3̄ 1 1

3

Li
L =

(

νeL

eL

) (

νµL

µL

) (

ντL

τL

)

1 2 −1

2

(ec)i
L = (ec)L (µc)L (τ c)L 1 1 1

Table 2: The fermion fields of the standard model and their gauge quantum numbers.

which yields

LMatter = iQ̄i
L D̸Qi

L + iūi
R D̸ui

R + id̄i
R D̸di

R + iL̄i
L D̸Li

L + iēi
R D̸ei

R . (28)

At this stage, all the fermions are massless. Majorana masses are forbidden by the fact
that all fermions carry hypercharge; in addition, some transform under a complex represen-
tation of SU(3), and some transform under a pseudoreal representation of SU(2)L. Dirac
masses are forbidden by the fact that no fermion transforms under the complex-conjugate
representation of another fermion.

The absence of fermion masses implies that LMatter has a good deal of (accidental) global
symmetry,

Qi
L → U ij

QL
Qj

L

ui
R → U ij

uR
uj

R

di
R → U ij

dR
dj

R

Li
L → U ij

LL
Lj

L

ei
R → U ij

eR
ej

R .

This symmetry is accidental in the sense that it is not imposed, but rather follows from the
fermion content and gauge symmetries of the standard model. Since there are five indepen-
dent U(3) symmetries, the global flavor symmetry of the matter Lagrangian is [U(3)]5.

These global flavor symmetries are violated by the Yukawa couplings of the fermions to
the Higgs field (see Table 2),

LY ukawa = −Γij
u Q̄i

Lϵφ
∗uj

R − Γij
d Q̄i

Lφdj
R − Γij

e L̄i
Lφej

R + h.c. (29)

where Γu, Γd, Γe are 3 × 3 complex matrices in generation space.

Exercise 2.1 - Show that if φ is an SU(2)L doublet, then so is ϵφ∗ (see Exercise 1.5).
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SU(3) SU(2)L U(1)Y

φ =

(

φ+

φ0

)

1 2 1

2

Table 3: The Higgs field and its gauge quantum numbers.

Only a very small subgroup of [U(3)]5 is not violated, corresponding to baryon number

Qi
L → eiθ/3Qi

L

ui
R → eiθ/3ui

R

di
R → eiθ/3di

R

and lepton number

Li
L → eiφLi

L

ei
R → eiφei

R .

Thus baryon number and lepton number are accidental global symmetries of the standard
model (see also Exercise 2.2).

When the Higgs field acquires a vacuum expectation value,

⟨φ⟩ =

(

0
v/

√
2

)

(30)

the fermion fields (except neutrinos) become massive via their Yukawa couplings to the Higgs
field, Eq. (29),

LM = −M ij
u ūi

Luj
R − M ij

d d̄i
Ldj

R − M ij
e ēi

Lej
R + h.c. , (31)

where
M ij = Γij v√

2
(32)

are fermion mass matrices. Thus ψL and ψR = Cγ0(ψc)∗L have paired up to make Dirac
masses for ui, di, ei. The neutrino field νL carries no unbroken gauge symmetry, so it could
potentially acquire a Majorana mass

L = −
1

2
M ij

ν (νiT
L Cνj

L + h.c.) . (33)

However, this term is forbidden by the accidental lepton number symmetry. Actually, baryon
number and lepton number are anomalous, but B −L is not [1]. So it is more precise to say
that a Majorana neutrino mass is forbidden by B − L.

The Yukawa matrices Γ in Eq. (29) are 3× 3 complex matrices, and since there are three
of them we have apparently introduced 3 × 3 × 3 × 2 = 54 new parameters into the theory.
However, we will now show that only a subset of these parameters are physically relevant.

Given this Lagrangian, one can proceed to calculate any physical process of interest.
However, it is convenient to first perform field redefinitions to make the physical content of
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The Standard Model Flavor Structure

• No FCNCs at tree level (loop suppressed)
• Flavor and generation mixing via charged currents in 
the quark sector (CKM matrix)
• No generation mixing in the charged lepton sector.
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Flavor Structure

5Yulia Furletova

Flavors in quark sectors
In the quark sector:  
The flavor changing neutral currents 
(FCNCs) are forbidden in the standard 
model (SM) at tree level (require a loop 
process involving a virtual W exchange).

• Family number is not a symmetry in SM: 
quark family number is violated in weak 
decays in the CKM matrix

• Flavor mixing in the standard  model 
quark sector is well established, 
through processes like !0–!0

oscillations, "d–"dmixing etc. 

What about lepton sector? 

• Discovery of neutrino oscillations already indicates physics beyond the Standard Model! (Need 
to extend the SM either via Dirac or Majorana neutrino mass scenario.



Lepton Flavor Violation

• Discovery of neutrino oscillations indicate that neutrinos have mass!

• Neutrino oscillations imply Lepton Flavor Violation (LFV).

• LFV in the neutrinos also implies Charged Lepton Flavor Violation (CLFV):

6.3 Electron-to-Tau conversion

Abhay Deshpande, Cyrus Faroughy, Matthew Gonderinger, Krishna Kumar, Swad-
hin Taneja

6.3.1 Introduction and Motivation

Every conservation law in the Standard Model (SM) is anticipated to have a symme-
try associated with it. We have no knowledge of a symmetry that asserts Lepton Flavor
Conservation in the Standard Model (SM) of particle physics and yet its (direct) violation
has never been seen. Although discovery of neutrino oscillations [1214, 1215] indicates that
charged Lepton Flavor Violation (LFV) processes such as µ → eγ should be allowed (within
the SM), its rate is expected to be very small (BR(µ → eγ) < 10−54) due to the very small
values of the neutrino masses. This level of sensitivity is beyond the reach of any present
or planned experiment. However, many models of physics Beyond the SM (BSM) predict
rates of charged lepton flavor violation significantly higher than those within the SM, some
of them even within the reach of present or planned experiments. LFV hence becomes a
very attractive process for experimental discovery of physics beyond the Standard Model.

Many searches for specific reactions which violate lepton flavor have been performed.
The most sensitive include searches for µ+N → e+N using low energy muons (from the
SINDRUM II collaboration [1216]), the muon decay µ → eγ (MEGA collaboration [1217,
1218]), and decays of kaons ([1219]). The limits from these processes, though extremely
precise, are all sensitive to e ↔ µ transitions (abbreviated LFV(1,2)) and not to e ↔ τ
transitions (LFV(1,3)). Also, each of these processes involve specific quark flavors: in
some, only the 1st generation quarks participate; in others the same quark flavor must
couple to the initial and final leptons, or strange quarks must participate. These stringent
bounds are related to the opportunities for such searches afforded by specific experimental
apparatuses. None of these searches involved the τ lepton either in the initial or in the final
state. Since a general model with lepton flavor violation may involve a τ lepton and also
initial and final state quarks of different flavors (not necessarily including strange quarks),
the above measurements would be blind to such LFV mechanisms. Existing best limits on
e ↔ τ conversion come from the BaBar Collaboration (τ → eγ) [1220] and the BELLE
Collaboration (τ → 3e) [1221]. These are notably worse than the limits on e ↔ µ by several
orders of magnitude. LFV searches at proposed future experiments would further improve
limits on e ↔ µ transitions.

The search for LFV involving τ leptons has been performed by the high energy lepton
- hadron collider experiments H1 and ZEUS. The LFV process could proceed via exchange
of a leptoquark (LQ), a color triplet boson – scalar or vector – with both lepton and
baryon quantum numbers which appears naturally in many extensions of the SM such as
GUTs, supersymmetry, compositeness, and technicolor (for a concise review of LFV in
several such models, see [1222]). The most recent limits on the search for ep → µX and
ep → τX were set by the H1 collaboration using HERA collisions at 320 GeV center-of-mass
energy and an integrated luminosity of 0.5 fb−1. They did not find any evidence for lepton
flavor violation [1223, 1224], and in turn they put limits on the mass and couplings of the
leptoquarks in the Buchmüller-Rückl-Wyler (BRW) effective model [1225].

A high energy, high luminosity electron-proton/ion collider (EIC) is being considered
by the US nuclear science community with a variable center-of-mass energy of 50 → 160
GeV and with 100 − 1000 times the accumulated luminosity of HERA over a comparable
operation time, see sections 7.1 and 7.2. In a recent study [1226] it has been argued that a

418

However, SM rate for CLFV is tiny 
due to small neutrino masses

• No hope of detecting such small 
rates for CLFV at any present or 
future planned experiments!



Lepton Flavor Violation in BSM
• However, many BSM scenarios predict enhanced CLFV rates:

• Enhanced rates for CLFV in BSM scenarios make them experimentally 
accessible.

1

• SUSY (RPV)

• SU(5), SO(10) GUTS

• Left-Right symmetric models

• Randall-Sundrum Models

• LeptoQuarks

• ...

r⇥ v = �2x ẑ (1)

r⇥ v = �2 ẑ (2)

v(x, y, z) = �x
2
ŷ (3)

v(x, y, z) = y x̂� x ŷ (4)

F(x, y) =
�y x̂+ x ŷp

x2 + y2
(5)

F(x, y) = x x̂+ y ŷ (6)

r · E =
⇢

✏0
(7)

r ·B = 0 (8)

r⇥ E = �@B

@t
(9)

(a)

γ

e−µ− B̃

µ̃R ẽR

(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 6.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m
2
L, and ae, respectively.

6.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (6.3.1) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [78]-[103].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
Figure 6.6a. The symbol “×” on the slepton line represents an insertion coming from −(m2

e)21µ̃
∗
RẽR

in LMSSM
soft , and the slepton-bino vertices are determined by the weak hypercharge gauge coupling [see

Figures 3.3g,h and eq. (3.4.9)]. The result of calculating this diagram gives [80, 83], approximately,

Br(µ → eγ) =

⎛

⎝
|m2

µ̃∗
R ẽR

|
m2
ℓ̃R

⎞

⎠
2 (

100 GeV

mℓ̃R

)4

10−6 ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

15 for mB̃ ≪ mℓ̃R
,

5.6 for mB̃ = 0.5mℓ̃R
,

1.4 for mB̃ = mℓ̃R
,

0.13 for mB̃ = 2mℓ̃R
,

(6.4.1)

where it is assumed for simplicity that both ẽR and µ̃R are nearly mass eigenstates with almost degener-
ate squared masses m2

ℓ̃R
, that m2

µ̃∗
R ẽR

≡ (m2
e)21 = [(m2

e)12]
∗ can be treated as a perturbation, and that

the bino B̃ is nearly a mass eigenstate. This result is to be compared to the present experimental upper
limit Br(µ → eγ)exp < 1.2 × 10−11 from [104]. So, if the right-handed slepton squared-mass matrix
m2

e were “random”, with all entries of comparable size, then the prediction for Br(µ → eγ) would be
too large even if the sleptons and bino masses were at 1 TeV. For lighter superpartners, the constraint
on µ̃R, ẽR squared-mass mixing becomes correspondingly more severe. There are also contributions to
µ → eγ that depend on the off-diagonal elements of the left-handed slepton squared-mass matrix m2

L,
coming from the diagram shown in fig. 6.6b involving the charged wino and the sneutrinos, as well as
diagrams just like fig. 6.6a but with left-handed sleptons and either B̃ or W̃ 0 exchanged. Therefore,
the slepton squared-mass matrices must not have significant mixings for ẽL, µ̃L either.

Furthermore, after the Higgs scalars get VEVs, the ae matrix could imply squared-mass terms that
mix left-handed and right-handed sleptons with different lepton flavors. For example, LMSSM

soft contains
ẽaeL̃Hd + c.c. which implies terms −⟨H0

d⟩(ae)12ẽ∗Rµ̃L − ⟨H0
d⟩(ae)21µ̃∗

RẽL + c.c. These also contribute
to µ → eγ, as illustrated in fig. 6.6c. So the magnitudes of (ae)12 and (ae)21 are also constrained
by experiment to be small, but in a way that is more strongly dependent on other model parameters
[83]. Similarly, (ae)13, (ae)31 and (ae)23, (ae)32 are constrained, although more weakly [84], by the
experimental limits on Br(τ → eγ) and Br(τ → µγ).
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Figure 6.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2
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L, and ae, respectively.

6.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (6.3.1) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [78]-[103].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
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⎛

⎝
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⎠
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⎪⎪⎪⎪⎩
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• LQs have a rich phenomenology and come in 14 types, classified according to: 

• Fermion number F=3B+L            [ |F|=0, 2 ]
• Spin                                           [scalar (S) or vector (V)]
• Chirality of coupling to leptons    [L or R]
• Gauge group quantum numbers   [SU(2)_L X  U(1)_Y]

• Leptoquarks (LQs) are color triplet bosons that couple leptons to quarks

• LQs arise in many BSM models:  

• Pati-Salam Model 
• GUTs: SU(5), SO(10),...
• Extended Technicolor

Leptoquarks
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Figure 5.4: Some of the supersymmetric (scalar)3 couplings proportional to µ∗yt, µ∗yb, and µ∗yτ . When
H0

u and H0
d get VEVs, these contribute to (a) t̃L, t̃R mixing, (b) b̃L, b̃R mixing, and (c) τ̃L, τ̃R mixing.

Figure 5.5: Squarks would mediate disas-
trously rapid proton decay ifR-parity were
violated by both ∆B = 1 and ∆L = 1 in-
teractions. This example shows p → e+π0

mediated by a strange (or bottom) squark. u
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5.2 R-parity (also known as matter parity) and its consequences

The superpotential eq. (5.1) is minimal in the sense that it is sufficient to produce a phenomenologically
viable model. However, there are other terms that one can write that are gauge-invariant and analytic
in the chiral superfields, but are not included in the MSSM because they violate either baryon number
(B) or total lepton number (L). The most general gauge-invariant and renormalizable superpotential
would include not only eq. (5.1), but also the terms

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (5.7)

W∆B=1 =
1

2
λ′′ijkuidjdk (5.8)

where family indices i = 1, 2, 3 have been restored. The chiral supermultiplets carry baryon number
assignments B = +1/3 for Qi; B = −1/3 for ui, di; and B = 0 for all others. The total lepton number
assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in eq. (5.7)
violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in eq. (5.8)
violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 5.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (5.9)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 5.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in eq. (5.8)
violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 5.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,
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which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 5.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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• With R-parity violation (RPV), the LSP is no longer stable, and many of the sparticle mass 
bounds from the LHC can be relaxed.

• SUSY RPV couplings (MSSM):

• R-parity:

Single squark production at 
HERA, EIC

1 Introduction

The ep collider HERA is ideally suited to search for new particles coupling to electron1–quark
pairs. In supersymmetric (SUSY) models with R–parity violation (̸Rp), squarks can couple
to electrons and quarks via Yukawa couplings λ′. At HERA, squarks with masses up to the
electron–proton centre–of–mass energy,

√
s = 319 GeV, could be produced resonantly via the

fusion of the incoming 27.6 GeV electron and a quark from the incoming 920 GeV proton.
Squark decays typically result in a number of high energetic particles in the final state, thus
several complementary multi–lepton and multi–jet topologies are investigated. The data used in
this analysis correspond to an integrated luminosity of 255 pb−1 for e+p collisions and 183 pb−1

for e−p collisions which represents the full data sample collected at
√
s = 319 GeV. For the

e−p sample, this represents an increase of a factor of thirteen compared to the previous H1
analysis [1], while for the e+p sample this corresponds to a factor of four. The search presented
here supersedes the results previously obtained by H1 [1,2]. Complementary direct searches for
R̸p SUSY have been carried out at the LEP e+e− collider [3,4] and at the Tevatron pp̄ collider [5,
6]. Indirect constraints from low energy precision observables are also available [7–10].

2 Phenomenology and Monte Carlo Simulation

2.1 Production of squarks inR–parity violating supersymmetry

Supersymmetric extensions of the Standard Model (SM) introduce new elementary particles
which are the superpartners (sparticles) of SM particles but differ in spin by half a unit. A
new quantum number Rp = (−1)3B+L+2S is defined, denoted R–parity, where B is the baryon
number, L the lepton number and S the spin of a particle. For particles Rp = 1 and for their
supersymmetric partners Rp = −1. Most of the collider searches focus on SUSY models
that conserve R–parity, allowing only pair–production of sparticles. However, the most gen-
eral supersymmetric theory that is renormalisable and gauge invariant with respect to the Stan-
dard Model gauge group does not impose R–parity conservation. Couplings between two SM
fermions and a squark (q̃) or a slepton (l̃) are then possible, allowing the single production of
sparticles. The R̸p Yukawa couplings responsible for squark production at HERA originate from
a lepton number violating term λ′

ijkLiQjDk in the superpotential, where i, j and k are family
indices. Li, Qj and Dk are superfields, which contain the left–handed leptons, the left–handed
up–type quarks and the right–handed down–type quarks, respectively, together with their SUSY
partners. Non–vanishing couplings λ′

1jk allow the resonant production of squarks at HERA via
eq fusion [11]. Feynman diagrams of these processes are shown in figure 1. The values of
the couplings are not fixed by the theory but are required to be small to conform with present
observations. For simplicity, it is assumed here that one of the λ′

1jk couplings dominates over
all the other trilinear R̸p couplings. At high Bjorken–x the density of antiquarks in the proton is
significantly smaller than that of the valence quarks. Hence e−p scattering gives sensitivity to
the couplings λ′

11k (k = 1, 2, 3) which dominate the production of d̃R–type squarks (i.e. the su-
perpartners d̃R, s̃R and b̃R of down–type quarks). The dominant contribution to the production

1In the following the generic term electron refers to both electron and positron unless explicitly stated otherwise.
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R-Parity Violating (RPV) SUSY
• For RPV production and RPV decay, signature is the same as for LQs:

• For other decays, the final state is more complicated:
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ŝ −→

e

λeqi
λℓqj LQ

q̄i

ℓ

q̄j

û −→

e

λeqi

λℓqj

Figure 1: Left: s-channel resonant LQ production and decay to a lepton-quark pair. Right:
u-channel exchange of a LQ. The indices i and j represent quark generation indices, such that
λeqi

denotes the coupling of an electron to a quark of generation i, and λℓqj
is the coupling of

the outgoing lepton ℓ to a quark of generation j. For ℓ = µ, τ , the LQ introduces LFV.

The double differential cross section for the s-channel tree level process is [12]:

d2σs

dxdy
=

1

32πŝ
︸ ︷︷ ︸

phase space

·
λ2

eqλ
2
ℓqŝ

2

(ŝ2 − m2
LQ)2 + m2

LQΓ2
LQ

︸ ︷︷ ︸

Breit-Wigner LQ propagator term

· qi(x, ŝ)

︸ ︷︷ ︸

parton density

×

{
1
2 scalar LQ
2(1 − y)2 vector LQ ,

(1)

where x is the Bjørken scaling variable, y denotes the inelasticity of the ep scattering process,
ŝ = sx represents the square of the eq centre-of-mass energy and ΓLQ is the total LQ width. A
similar expression holds for the u channel exchange [12].

An overview of the extended effective model for the LQ coupling to u and d quarks is given
in table 1. For convenience only one LFV transition is considered: either between the first
and the second generations or between the first and the third generations. The branching ratio
LQ → µ(τ)q is given by

BR = βℓ × βLFV with βLFV =
Γµ(τ)q

Γµ(τ)q + Γe
and Γℓq = mLQλ2

ℓq ×

{
1

16π scalar LQ
1

24π vector LQ
(2)

where Γℓq denotes the partial LQ decay width to a lepton ℓ = e, µ, τ and a quark q and where
βℓ =Γℓq/(Γℓq + Γνℓq) is the fraction of decays into charged leptons. Some LQs, namely SL

0 , SL
1 ,

V L
0 and V L

1 , can decay to a neutrino-quark pair resulting in βℓ = 0.5. Since neutrino flavours
cannot be distinguished with the H1 experiment, such final states are not covered in this search,
but they are implicitly included in the search for first generation LQs [13].

To determine the signal detection efficiencies, events with LQs are generated using the
LEGO [14] event generator with the CTEQ5L parametrisation of the parton distribution func-
tions (PDF) of the proton [15]. The LQ signal expectation is a function of the LQ type, mass,
coupling constant and βLFV. The analysis usually requires a large number of simulated signal
Monte Carlo (MC) samples. To overcome this technical difficulty, the LEGO program is used
to produce a high statistics MC signal event sample generated according to a double-differential
cross section d2σgeneric/(dx dQ2) obtained from (1) by replacing the Breit-Wigner LQ propaga-
tor term with a constant. This unique MC sample is used to calculate the efficiency to select a

6

• The bounds on LQs can be applied to squarks if they proceed via RPV decay.
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• Lepton sector with a Majorana mass generating effective operator:

for i = 1, 2, 3. Models with MFV have only two independent sources of breaking of this
group, namely the two Yukawa couplings λU and λD. Each of them breaks the symmetry
in a specific way: in the spurion sense, λU transforms as a (3, 3̄, 1) while λD as a (3, 1, 3̄).
In MFV models any higher dimension operator that describes long distance remnants
of very short distance physics must be invariant under the full flavor symmetry group
when the couplings λU and λD are taken to transform as spurions as above [3].

In order to define a similar minimal flavor violating structure for the leptons, we first
need to specify the field content of the theory in the lepton sector. As anticipated, we
shall consider two cases:

1. Minimal field content: three left-handed lepton doublets Li
L and three right-handed

charged lepton singlets ei
R (SM field content). In this case the lepton flavor sym-

metry group is
GLF = SU(3)L × SU(3)E . (1)

The lepton sector is also invariant under two U(1) symmetries, which can be iden-
tified with total lepton number, U(1)LN, and the weak hypercharge.

2. Extended field content: three right-handed neutrinos, νi
R, in addition to the SM

fields. In this case the field content of the lepton sector is very similar to that of
the quark sector, with a maximal flavor group GLF × SU(3)νR

.

In the following we shall define separately the assumptions of Minimal Lepton Flavor
Violation (MLFV) in these two cases.

2.1 Minimal Field Content

In this case the minimal choice for the neutrino mass matrix is a left-handed Majorana
mass term transforming as (6, 1) under GLF. Because of the SU(2)L gauge symmetry, this
mass term cannot be generated by renormalizable interactions. Moreover, the absence
of right-handed neutrino fields requires the breaking of total lepton number. We define
the MLFV hypothesis in this case as follows:

1. The breaking of the U(1)LN is independent from the breaking of the lepton flavor
symmetry (GLF) and is associated to a very high scale ΛLN.

2. There are only two irreducible sources of lepton-flavor symmetry breaking, λij
e and

gij
ν , defined by1

LSym.Br. = −λij
e ēi

R(H†Lj
L) −

1

2ΛLN
gij

ν (L̄ci
Lτ2H)(HT τ2L

j
L) + h.c. (2)

→ −vλij
e ēi

Rej
L −

v2

2ΛLN
gij

ν ν̄ci
L νj

L + h.c. (3)

The smallness of the neutrino mass is attributed to the smallness of v/ΛLN, while
gij

ν can have entries of O(1) as in the standard see-saw mechanism.
1 Throughout this paper we use four-component spinor fields, and ψc = −iγ2ψ∗ denotes the charge

conjugate of the field ψ. We also use v = ⟨H0⟩ ≃ 174 GeV.
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Minimal Flavor Violation in Lepton Sector with 
Majorana Neutrino Mass
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R (SM field content). In this case the lepton flavor sym-

metry group is
GLF = SU(3)L × SU(3)E . (1)

The lepton sector is also invariant under two U(1) symmetries, which can be iden-
tified with total lepton number, U(1)LN, and the weak hypercharge.

2. Extended field content: three right-handed neutrinos, νi
R, in addition to the SM

fields. In this case the field content of the lepton sector is very similar to that of
the quark sector, with a maximal flavor group GLF × SU(3)νR

.

In the following we shall define separately the assumptions of Minimal Lepton Flavor
Violation (MLFV) in these two cases.

2.1 Minimal Field Content

In this case the minimal choice for the neutrino mass matrix is a left-handed Majorana
mass term transforming as (6, 1) under GLF. Because of the SU(2)L gauge symmetry, this
mass term cannot be generated by renormalizable interactions. Moreover, the absence
of right-handed neutrino fields requires the breaking of total lepton number. We define
the MLFV hypothesis in this case as follows:

1. The breaking of the U(1)LN is independent from the breaking of the lepton flavor
symmetry (GLF) and is associated to a very high scale ΛLN.

2. There are only two irreducible sources of lepton-flavor symmetry breaking, λij
e and

gij
ν , defined by1

LSym.Br. = −λij
e ēi

R(H†Lj
L) −

1

2ΛLN
gij

ν (L̄ci
Lτ2H)(HT τ2L

j
L) + h.c. (2)

→ −vλij
e ēi

Rej
L −

v2

2ΛLN
gij

ν ν̄ci
L νj

L + h.c. (3)

The smallness of the neutrino mass is attributed to the smallness of v/ΛLN, while
gij

ν can have entries of O(1) as in the standard see-saw mechanism.
1 Throughout this paper we use four-component spinor fields, and ψc = −iγ2ψ∗ denotes the charge

conjugate of the field ψ. We also use v = ⟨H0⟩ ≃ 174 GeV.
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The transformation properties of the lepton field under GLF are

LL → VL LL , eR → VR eR . (4)

Thus the Lagrangian (2) is formally invariant under this symmetry if the matrices λij
e

and gij
ν are taken as spurions transforming as

λe → VR λeV
†
L , gν → V ∗

L gνV
†
L . (5)

Since we are interested in LFV processes with external charged leptons, we can use
the GLF invariance and rotate the fields in the basis where λe is flavor diagonal. In such
basis

λe =
mℓ

v
=

1

v
diag(me, mµ, mτ ) ,

gν =
ΛLN

v2
Û∗mνÛ

† =
ΛLN

v2
Û∗diag(mν1

, mν2
, mν3

)Û † , (6)

where Û is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. The latter
can be written as Û = U †

eL
UνL

in terms of the unitary matrices which connect a generic
basis of the lepton fields to the mass-eigenstate basis (denoted by a prime):

eL = UeL
e′L , eR = UeR

e′R , νL = UνL
ν ′

L . (7)

In the basis defined by (6) the simplest spurion combination transforming as (8, 1) under
GLF, or the coupling which controls the amount of LFV in the charged-lepton sector, is2

∆|minimal = g†
νgν =

Λ2
LN

v4
Ûm2

νÛ
† . (8)

2.2 Extended Field Content

The second scenario we consider has three right-handed neutrinos in addition to the
SM fields, with a maximal flavor group GLF × SU(3)νR

. There is a large freedom in
deciding how to break this group in order to generate the observed masses and mixing.
In addition to the standard Yukawa coupling for the charged leptons, in principle we
can introduce neutrino mass terms transforming as (6, 1, 1), (1, 1, 6), and (3̄, 1, 3). Since
we are interested in a minimal scenario, with unambiguous links between the irreducible
sources of flavor-symmetry breaking and the observable couplings in the neutrino mass
matrix, we must choose only one of these possibilities. In order to distinguish this
scenario from the previous one, and guided by the structure of explicit models with
see-saw mechanism (see e.g. Ref. [4]), we make the following assumptions:

1. The right-handed neutrino mass term breaks SU(3)νR
to O(3)νR

, namely is pro-
portional to the identity matrix in flavor space:

LνR-mass = −
1

2
M ij

ν ν̄ci
Rνj

R + h.c. with M ij
ν = Mνδ

ij . (9)

2 g†νgν also contains a (1, 1) piece under GLF. However, it does not contribute to lepton flavor
violation. Note also that if CP were an exact symmetry, VL in Eq. (5) would be required to be real,
and therefore ∆minimal = gν .
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• Higher dimension operators that parameterize BSM physics built out of the Yukawa and 
neutrino mass matrices using spurion analysis.  Naturally allows for BSM physics to satisfy 
FCNC constraints.

to the MLFV hypothesis, these operators must be constructed in terms of SM fields and
the spurions λe and gν (or λν), and must be invariant under GLF when the spurions
transform as in Eqs. (5) or (11).

We are interested in those operators of dimension five and six that could lead to LFV
process with charged leptons. These operators must conserve total lepton number, oth-
erwise they would be suppressed by the large U(1)LN breaking scale. As a consequence,
no dimension-five term turns out to be relevant. For processes involving only two lepton
fields, such as µ → eγ and µ-to-e conversion, the basic building blocks are the bilinears
L̄i

LΓLj
L, ēi

RΓLj
L and ēi

RΓej
R. Their indexes must be contracted with spurion combina-

tions transforming under GLF as (8, 1), (3̄, 3) and (1, 8), respectively. Combinations of
this type are

(8, 1) ∆, λ†
eλe, ∆

2, λ†
eλe∆, . . . (15)

(3̄, 3) λe, λe∆, λeλ
†
eλe , . . . (16)

(1, 8) λeλ
†
e, λe∆λ†

e , . . . (17)

where ∆ is defined in Eqs. (8) or (14) for the two scenarios. Given the smallness of λe

(which is unambiguously fixed by charged lepton masses), we can safely neglect terms
which are of second order in λe. We shall also assume that the entries of ∆ are per-
turbative, retaining only linear terms in this effective coupling. In this limit the only
relevant LFV couplings are ∆ and λe∆. Moreover, we work only to linear order in the
quark Yukawa couplings, λU and λD.

The resulting dimension-six operators bilinear in the lepton fields can be written as

O(1)
LL = L̄Lγµ∆LL H†iDµH

O(2)
LL = L̄Lγµτa∆LL H†τaiDµH

O(3)
LL = L̄Lγµ∆LL Q̄LγµQL

O(4d)
LL = L̄Lγµ∆LL d̄RγµdR

O(4u)
LL = L̄Lγµ∆LL ūRγµuR

O(5)
LL = L̄Lγµτa∆LL Q̄Lγµτ

aQL

O(1)
RL = g′H†ēRσµνλe∆LL Bµν

O(2)
RL = gH†ēRσµντaλe∆LL W a

µν

O(3)
RL = (DµH)†ēRλe∆DµLL

O(4)
RL = ēRλe∆LL Q̄LλDdR

O(5)
RL = ēRσµνλe∆LL Q̄LσµνλDdR

O(6)
RL = ēRλe∆LL ūRλ†

U iτ 2QL

O(7)
RL = ēRσµνλe∆LL ūRσµνλ

†
U iτ 2QL

(18)

We have omitted operators of the type H†ēRλeLL H†H , which correct the charged lepton
mass matrix but produce no FCNC interactions.

The operator O(3)
RL does not contribute to the radiative lepton flavor changing decays

ℓi → ℓjγ, and its contribution to µ-e conversion is suppressed by memµ/v2. The MFV
assumption in the quark sector requires the RL operators with a quark current to contain
at least one power of the quark Yukawa couplings λD or λU . Only the top-quark Yukawa
is non-negligible, and hence, for the low energy processes we consider O(4)

RL–O(7)
RL can be

neglected.
Since the top quark Yukawa is order one, in principle, operators involving higher

orders in λU could be important. They induce non-negligible FCNC currents in the
down-quark sector of the type VCKMtiVCKM

∗
tj d̄

i
Lγµdj

L [3]. For µ-to-e conversion only the
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coupling to light quarks is relevant, and this additional contribution is suppressed by
|VCKMtd|2 ≪ 1.

In this paper we shall analyze the phenomenological consequences of the MLFV
hypothesis only in processes involving two lepton fields, for which significant prospects
of experimental improvements are foreseen in the near future [5, 6]. However, one can in
principle apply it also to four-lepton processes, such as µ → 3e. In this case one needs
to extend the operator basis (18) including the generalization of O(3−5)

LL , namely

L̄Lγµ∆LL L̄LγµLL , L̄Lγµ∆LL ēRγµeR , L̄Lγµτa∆LL L̄Lγµτ
aLL , (19)

and also new structures of the type

L̄c
LgνLL L̄Lg†

νL
c
L or L̄c

LλT
ν λνLL L̄Lλ†

νλ
∗
νL

c
L . (20)

3.1 Explicit structure of the LFV couplings

Given the structure of operators in Eq. (18), it is clear that the strength of LFV processes
is determined by the entries of the matrix ∆ in the mass-eigenstate basis of charged
leptons. These are listed below for the two scenarios we are considering, and for the two
allowed structures (normal and inverted hierarchy) of the neutrino mass matrix:

1. Minimal field content. According to Eq. (8), we have

∆ij =
Λ2

LN

v4

[
m2

ν1
δij + Ûi2Û

∗
j2 ∆m2

sol ± Ûi3Û
∗
j3 ∆m2

atm

]
, (21)

where ∆m2
atm and ∆m2

sol denote the squared mass differences deduced from at-
mospheric and solar neutrino data, respectively. The plus sign corresponds to
normal hierarchy (mν1

< mν2
≪ mν3

), while the minus one to the inverted case
(mν3

≪ mν1
< mν2

). Explicitly, using the PDG notation of the PMNS matrix (we
adopt the convention that s13 ≥ 0 and 0 ≤ δ < 2π) [9], we find

∆µe =
Λ2

LN

v4

1√
2

(
s c ∆m2

sol ± s13 eiδ ∆m2
atm

)
≡

Λ2
LN

v2
aµe ,

∆τe =
Λ2

LN

v4

1√
2

(
−s c ∆m2

sol ± s13 eiδ ∆m2
atm

)
≡

Λ2
LN

v2
aτe ,

∆τµ =
Λ2

LN

v4

1

2

(
−c2 ∆m2

sol ± ∆m2
atm

)
≡

Λ2
LN

v2
aτµ , (22)

where we have assumed maximal mixing for the atmospheric case and s and c
denote sine and cosine of the solar mixing angle. In a given scenario for the
spectrum (normal or inverted), the dimensionless couplings aij are completely fixed
by oscillation experiments modulo the dependence on the combination s13eiδ.

2. Extended field content. According to Eq. (14), assuming CP conservation in the
lepton sector we have

∆ij =
Mν

v2

[
mν1

δij + Ûi2Ûj2 (mν2
− mν1

) + Ûi3Ûj3 (mν3
− mν1

)
]

. (23)
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∗
j3 ∆m2

atm

]
, (21)

where ∆m2
atm and ∆m2

sol denote the squared mass differences deduced from at-
mospheric and solar neutrino data, respectively. The plus sign corresponds to
normal hierarchy (mν1

< mν2
≪ mν3

), while the minus one to the inverted case
(mν3

≪ mν1
< mν2

). Explicitly, using the PDG notation of the PMNS matrix (we
adopt the convention that s13 ≥ 0 and 0 ≤ δ < 2π) [9], we find

∆µe =
Λ2

LN

v4

1√
2

(
s c ∆m2

sol ± s13 eiδ ∆m2
atm

)
≡

Λ2
LN

v2
aµe ,

∆τe =
Λ2

LN

v4

1√
2

(
−s c ∆m2

sol ± s13 eiδ ∆m2
atm

)
≡

Λ2
LN

v2
aτe ,

∆τµ =
Λ2

LN

v4

1

2

(
−c2 ∆m2

sol ± ∆m2
atm

)
≡

Λ2
LN

v2
aτµ , (22)

where we have assumed maximal mixing for the atmospheric case and s and c
denote sine and cosine of the solar mixing angle. In a given scenario for the
spectrum (normal or inverted), the dimensionless couplings aij are completely fixed
by oscillation experiments modulo the dependence on the combination s13eiδ.

2. Extended field content. According to Eq. (14), assuming CP conservation in the
lepton sector we have

∆ij =
Mν

v2

[
mν1

δij + Ûi2Ûj2 (mν2
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Note that the assumption of CP conservation forces us to choose the PMNS phase
δ = 0 or π. Hence,

∆µe =
Mν

v2

1√
2

[s c (mν2
− mν1

) ± s13 (mν3
− mν1

)] ≡
Mν

v
bµe ,

∆τe =
Mν

v2

1√
2

[−s c (mν2
− mν1

) ± s13 (mν3
− mν1

)] ≡
Mν

v
bτe ,

∆τµ =
Mν

v2

1

2

[
−c2 (mν2

− mν1
) + (mν3

− mν1
)
]
≡

Mν

v
bτµ , (24)

where the + and − signs correspond to δ = 0 and π, respectively. In the normal
hierarchy case (ν1 is the lightest neutrino), one has:

mν2
− mν1

mν1→0
−→

√
∆m2

sol , mν3
− mν1

mν1→0
−→

√
∆m2

atm , (25)

while in the inverted hierarchy case (ν3 is the lightest neutrino)

mν2
− mν1

mν3→0
−→

∆m2
sol

2
√

∆m2
atm

, mν3
− mν1

mν3→0
−→ −

√
∆m2

atm . (26)

After using input from oscillation experiments, the couplings bij still depend on the
spectrum ordering, the lightest neutrino mass, and the value of s13 (the dependence
from δ has disappeared because of the assumption of CP conservation).

4 Phenomenology

We are now ready to analyze the phenomenological implications of the new LFV oper-
ators. In particular, we are interested in answering the following questions: (i) under
which conditions on the new physics scales ΛLN (or Mν) and ΛLFV can we expect ob-
servable effects in low energy reactions and therefore positive signals in forthcoming
experiments? (ii) is there a specific pattern in the decay rates predicted by MLFV? Can
we use it to falsify the assumption of minimal flavor violation?

In order to address these issues, we will study the rates for µ → e conversion in nuclei
ΓA

conv ≡ Γ(µ− + A(N, Z) → e− + A(N, Z)), experimentally normalized to the capture
rate ΓA

capt ≡ Γ(µ− +A(Z, N) → νµ +A(Z − 1, N +1)), and the radiative decays µ → eγ,
τ → µγ, τ → eγ. Throughout, we will use normalized branching fractions defined as:

BA
µ→e ≡

ΓA
conv

ΓA
capt

, Bℓi→ℓjγ ≡
Γ(ℓi → ℓjγ)

Γ(ℓi → ℓjνiν̄j)
. (27)

The starting point of our analysis is the effective Lagrangian generated at a scale ΛLFV

L =
1

Λ2
LFV

5∑

i=1

c(i)
LLO(i)

LL +
1

Λ2
LFV

(
2∑

j=1

c(j)
RLO(j)

RL + h.c.

)

(28)

In principle one should evolve this Lagrangian down to the mass of the decaying particles.
However, for the purpose of the present work we shall neglect the effect of electroweak
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• Higher dimension operators suppressed by LFV scale, distinct from lepton number 
violation scale:
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in Table 1. Then setting all the Wilson coefficients to zero but for c(2)
RL = c(3)

LL = 1, and
using the overlap integrals and capture rates reported in Ref. [7] (table I of [7]), we find

Bµ→e =

(
ΛLN

ΛLFV

)4
{

6.6 × 10−50 for Al

19.6 × 10−50 for Au
Bµ→eγ = 8.3× 10−50

(
ΛLN

ΛLFV

)4

.

(33)
Despite the strong dependence of the numerical coefficients in Eq. (33) on s13, illustrated
in Figure 1, these results allow us to draw several interesting conclusions.

• If there is no large hierarchy between the scales of lepton-number and lepton-flavor
violation, there is no hope to observe LFV signals in charged-lepton processes. On
the other hand, if ΛLFV is not far from the TeV scale (as expected in many realistic
scenarios), it is natural to expect visible LFV processes for a wide range of ΛLN:
from 1013 GeV up to the GUT scale. For instance a Bµ→e = O(10−13), within
reach of the MECO experiment, is naturally obtained for ΛLN ∼ 109ΛLFV, which
for ΛLFV ∼ 10 TeV implies ΛLN ∼ 1013 GeV. Such a ratio of scales would also
imply Bµ→eγ = O(10−13), within the reach of the MEG experiment.

Note that the requirement of “perturbative” treatment of the couplings gν , to-
gether with upper limits on the light neutrino masses, implies upper limits on
the scale ΛLN ≃ v2gν/mν . By loosely requiring |gν | < 1 one obtains ΛLN ∼<
3 × 1013 (1 eV/mν) GeV. This means that we cannot make the ratio ΛLN/ΛLFV

arbitrarily large.

• Interestingly, µ → e conversion and µ → eγ have a quite different sensitivity on
the type of operators involved. In particular, while µ → eγ is sensitive only to the
LR operators, the µ → e conversion is more sensitive to the LL terms:

Bµ→e(c
(2)
RL = 1, other c(i) = 0)

Bµ→e(c
(3)
LL = 1, other c(i) = 0)

=

{
3 × 10−3 for Al ,

1.5 × 10−3 for Au ,
(34)

Bµ→e(c
(2)
RL = 1, other c(i) = 0)

Bµ→e(c
(1)
LL = 1, other c(i) = 0)

=

{
0.47 for Al ,

0.17 for Au .
(35)

• The comparison of the various Bli→ljγ rates is a useful tool to illustrate the pre-
dictive power of the MLFV (and eventually to rule it out from data). In Figure 2
we report the ratios Bµ→eγ/Bτ→µγ and Bµ→eγ/Bτ→eγ as a function of s13 for three
different values of the CP violating phase δ in the normal hierarchy case (the in-
verted case is obtained by replacing δ with π − δ). One observes the clear pattern
Bτ→µγ ≫ Bτ→eγ ∼ Bµ→eγ , with hierarchy increasing as s13 → 0. Observation of
deviations from this pattern could in the future falsify the hypothesis of minimal
flavor violation in the lepton sector.

• There is a window in parameter space where we can expect observable effects in
τ decays. As illustrated in Figure 3, Bτ→µγ does not depend on s13, while Bµe

does. In the normal hierarchy case, for δ = π and s13 → sc∆m2
sol/∆m2

atm, one
has Bµ→eγ → 0. Therefore, close to this region of parameter space one can have a
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we report the ratios Bµ→eγ/Bτ→µγ and Bµ→eγ/Bτ→eγ as a function of s13 for three
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verted case is obtained by replacing δ with π − δ). One observes the clear pattern
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deviations from this pattern could in the future falsify the hypothesis of minimal
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• There is a window in parameter space where we can expect observable effects in
τ decays. As illustrated in Figure 3, Bτ→µγ does not depend on s13, while Bµe
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Huge enhancement factor when: 

1

• SUSY (RPV)

• SU(5), SO(10) GUTS

• Left-Right symmetric models

• Randall-Sundrum Models

• LeptoQuarks

• ...

⇤LN � ⇤LFV (1)

ep ! ⌧X (2)

(rare CLFV decays)

(3̄, 3) (3)

p
s ⇠ 90 GeV (4)

L ⇠ 10 fb�1 (5)

p
s ⇠ 320 GeV (6)

L ⇠ 0.5 fb�1 (7)

(µ ! e conversion in nuclei) (8)

µ ! e� (9)
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• In MFV scenario, a large disparity between lepton number violation and lepton flavor 
violation scales will produce enhanced CLFV rates.

    

[Cirigliano, Grinstein, Isidori, Wise]



Charged Lepton Flavor Violation Limits

• Present and future limits:

• Note that CLFV(1,2) is severely constrained. Limits on CLFV(1,3) are weaker by several 
orders of magnitude.

• Limits on CLFV(1,2) are expected to improve even further in future experiments.

14Yulia Furletova

Strongest present limits on $->e, %->e, %->$
Many searches for a physics Beyond the Standard Model,
example

$ −→ - − /
Current limit (MEG) : Br < 4.2 <10-13

    

[taken from a talk by Y. Furletova]



CLFV in DIS
• The EIC can search for CLFV(1,3) in the DIS process (using electrons and 
positrons):

 
 
 
 
 
 
 

 
 
� 𝛼, 𝛽  are (anti)quark generation indices  
� 𝐹 = 2  interchanges quarks, antiquarks 
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• Such a process could be mediated, for example, by leptoquarks: 

1

• SUSY (RPV)

• SU(5), SO(10) GUTS

• Left-Right symmetric models

• Randall-Sundrum Models

• LeptoQuarks

• ...

ep ! ⌧X (1)

(rare CLFV decays)

(µ ! e conversion in nuclei) (2)

µ ! e� (3)

⌧ ! e� (4)

⌧ ! µ� (5)

µ ! 3e (6)

⌧ ! 3e (7)

µ+N �! e+N (8)

r⇥ v = �2x ẑ (9)

• A phenomenological study of CLFV mediated by LQs at the EIC was first done in 2010.    

[M.Gonderinger, M.Ramsey-Musolf]

    

[see also talk by Jinlong Zhang]



• LQs have a rich phenomenology and come in 14 types, classified according to: 

Leptoquarks

• Fermion number F=3B+L            [ |F|=0, 2 ]
• Spin                                           [scalar (S) or vector (V)]
• Chirality of coupling to leptons    [L or R]
• Gauge group quantum numbers   [SU(2)_L X  U(1)_Y]

• Leptoquarks (LQs) are color triplet bosons that couple leptons to quarks

• LQs arise in many BSM models:  

• Pati-Salam Model 
• GUTs: SU(5), SO(10),...
• Extended Technicolor
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Leptoquarks at EIC

David South ICHEP 2012

● High luminosity (~100-1000 higher then HERA)
              HERA: L~1030-31cm-2s-1 (0.5 fb-1)
              EIC: L~1034cm-2s-1 (>50 fb-1)
● Electron and positron beam will probe different types of 

Leptoquarks
  -electron-proton collisions, mainly F=2 LQs prodused
  -positron-proton collisions, mainly F=0 LQs prodused

●  eD (deuterium) vs ep collisions
● LQs are chiral particles, gain in sensitivity due to polarised beams

eq. (2.1).

LLQ = LF=0 + L|F |=2

LF=0 = hL
1/2uRℓLS

L
1/2 + hR

1/2qLϵeRS
R
1/2 + h̃L

1/2dRℓLS̃
L
1/2 + hL

0 qLγµℓLV
L
0

µ

+ hR
0 dRγµeRV

Rµ
0 + h̃R

0 uRγµeRṼ
Rµ
0 + hL

1 qLγµτ⃗ ℓLV⃗
Lµ
1 + h.c.

L|F |=2 = gL0 q
c
LϵℓLS

L
0 + gR0 u

c
ReRS

R
0 + g̃R0 d

c
ReRS̃

R
0 + gL1 q

c
Lϵτ⃗ ℓLS⃗

L
1 + gL1/2d

c
RγµℓLV

Lµ
1/2

+ gR1/2q
c
LγµeRV

Rµ
1/2 + g̃L1/2u

c
RγµℓLṼ

Lµ
1/2 + h.c.

(2.1)

In eq. (2.1), qL and ℓL are the SU(2) doublet quarks and leptons, uR, dR, eR are the SU(2)
singlet quarks and charged lepton, ϵ is the SU(2) antisymmetric tensor (ϵ12 = −ϵ21 = +1),
τ⃗ = (τ1, τ2, τ3) are the Pauli matrices, and the charge conjugated fermion is defined as ψc ≡
Cψ

T
= iγ2γ0ψ

T
in the Dirac basis for the γ matrices. Color, SU(2), and flavor (generation)

indices have been suppressed. The leptoquarks are characterized by their fermion number,
their spin, the chirality of their coupling to leptons, and their gauge group quantum numbers.
The leptoquarks carry fermion number F = 3B+L equal to 0 or ±2. We follow the notation
used in the recent literature where spin-0 leptoquarks are S and spin-1 are V , the subscript
indicates the SU(2) quantum number (0 for a singlet, 1/2 for a doublet, 1 for a triplet),
the superscript L,R indicates the chirality of the lepton coupling to the leptoquark, and a
tilde (̃ ) is used to distinguish between leptoquarks which have different hypercharges but
are otherwise identical. The dimensionless coupling constants g and h (which we assume to
be real) carry the same lepton chirality and SU(2) labels as their associated leptoquarks.
Lepton flavor violation can arise if the couplings — which are matrices in flavor space —
have non-zero off-diagonal elements.

We will also require the interactions between the BRW leptoquarks and the photon. The
photon interactions arise from the Lagrangian kinetic terms with SU(2)L×U(1)Y covariant
derivatives acting on the leptoquark fields [23]:

L(scalar)
kinetic = (DµS)

† (DµS) , (2.2)

L(vector)
kinetic = −

1

2
(DµVν −DνVµ)

† (DµV ν −DνV µ) . (2.3)

The covariant derivative is given by

Dµ = ∂µ + igT⃗ · W⃗µ + ig′
Y

2
Bµ , (2.4)

where the T a are the generator matrices for the SU(2) representation occupied by the
leptoquarks (singlet, doublet2, or triplet). The photon interaction for a scalar leptoquark is
given by

L(scalar)
LQ,γ = ieQLQ

[(

∂µS
†
)

S − S† (∂µS)
]

Aµ , (2.5)

where QLQ is the electric charge of the leptoquark.
For the vector leptoquarks, interactions with the photon depend on the nature of these

massive vector particles, i.e., whether or not the leptoquarks are gauge bosons of some

2 Note that the doublets must be in the 2 representation given the form of the Lagrangian in eq. (2.1).

E.g., explicitly writing the SU(2) indices, uRℓLiS
L
1/2i

shows that the i = 2 component of the leptoquark

multiplet couples to the electron and must have the opposite T 3 eigenvalue to be SU(2) invariant.
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• Renormalizable and gauge invariant couplings of LQs to quarks and leptons:

• Classification of the 14 types of LQs:

    

[Buchmuller, Ruckl,Wyler (BRW)]
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● High luminosity (~100-1000 higher then HERA)
              HERA: L~1030-31cm-2s-1 (0.5 fb-1)
              EIC: L~1034cm-2s-1 (>50 fb-1)
● Electron and positron beam will probe different types of 

Leptoquarks
  -electron-proton collisions, mainly F=2 LQs prodused
  -positron-proton collisions, mainly F=0 LQs prodused

●  eD (deuterium) vs ep collisions
● LQs are chiral particles, gain in sensitivity due to polarised beams

• In order to maximally exploit the phenomenology of LQs and be able to 
distinguish between different types of LQ states, we need:

-electron and positron beams       [separate |F|=0 vs |F|=2 ]
-proton and deuteron targets       [separate “eu” vs “ed” LQs]
-polarized beams                         [separate L vs R]
-wide kinematic range                  [separate scalar vs vector LQs]

    

[Buchmuller, Ruckl,Wyler (BRW)]



Leptoquarks: Electron vs Positron Beams

e−

qα
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qβ

e−
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F = 0 |F | = 2

s-channel u-channel s-channel u-channel

FIG. 1. Feynman diagrams for e → τ scattering processes via leptoquarks which depend on the
parameter λ1αλ3β/M2

LQ. The partonic cross section is convoluted with the pdf of the initial state
(anti)quark of each diagram. See eq. (3.1).

The parton distribution functions for the quarks and antiquarks are q (x,Q2) and q (x,Q2),
respectively, evaluated at momentum fraction x and energy scale Q2. Also, u = xs (y − 1)
and both x and y are integrated from 0 to 1. The leptoquark couplings λ1α and λ3β are
the couplings g and h which appear in the Lagrangian of eq. (2.1) (additional factors of −1
and/or

√
2 may multiply these couplings, depending on the leptoquark SU(2) representation

— see, e.g., Table 2 of [22] and Table 1 of [23]). The subscripts on the couplings λ are gener-
ation indices: 1 and 3 for the electron and tau, and α and β for the quarks/antiquarks.3 We
refer to ratios with α = β as “quark flavor-diagonal” and those with α ≠ β as “quark flavor-
off-diagonal”. The ZEUS and H1 collaborations placed upper limits (at 95% confidence
level) on the ratio λ1αλ3β/M2

LQ for each type of BRW leptoquark and for all combinations
of α and β except in cases where the top quark was the only third-generation quark coupled
to the leptoquark [24–27]. To obtain these limits, several assumptions were made: only
one type of leptoquark dominated the cross section, the leptoquark coupled only to left- or
right-handed leptons but not both4, and leptoquarks in SU(2) multiplets are degenerate in
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• With electron beams, LQs couple to:

|F|= 2: 
     -quarks in s-channel 
     -antiquarks in u-channel           
 

• With positron beams, LQs couple to:

|F|= 2: 
      -antiquarks in s-channel
      -quarks in u-channel           

F= 0: 
     -antiquarks in s-channel
     -quarks in the u-channel  

F= 0: 
     -quarks in s-channel 
     -antiquarks in the u-channel   

F= 3B+L



Cross Sections
• The tree level cross section using an electron beam for the F=0 and F=2 LQ channels:

beyond-the-SM symmetry group. In addition to the interaction arising from eq. (2.3), there
can exist an anomalous magnetic moment coupling of the leptoquark to the photon, so the
full interaction Lagrangian is

L(vector)
LQ,γ = −ieQLQ

([

V†
µνV

ν − VµνV
ν†
]

Aµ − (1− κ) V †
µVνF

µν
)

(2.6)

where the leptoquark field strength tensor Vµν is given by

Vµν ≡ ∂µV ν − ∂νV µ (2.7)

and F µν is the usual photon field strength tensor. If the leptoquarks are gauge bosons (as
in the case of some SU(5) GUTs, e.g.), then κ = 0 and the resulting photon interaction is a
three-gauge-boson vertex, the result of spontaneous symmetry breaking of the higher gauge
group containing both the leptoquarks and the photons to U(1)EM . (Also, if the leptoquarks
are gauge bosons, eq. (2.3) is replaced by the appropriate kinetic term for the gauge bosons
of the larger symmetry group.) This question of the gauge nature of the vector leptoquarks
will have further implications for our analysis, particularly in the calculation of the τ → eγ
limits (see section IV). Finally, the electric charges of the scalar and vector leptoquarks
which appear in the photon interaction terms are easily determined from eq. (2.1) (also, see
Table 1 in [23]).

III. CROSS SECTION CALCULATIONS FOR e → τ

Electron to tau conversion in an e−p deep inelastic scattering process is the LFV(1,3) sig-
nal at the EIC which we consider in our analysis. In the BRW leptoquark parameterization,
such a process occurs via tree level partonic interactions. In e−p collisions, F = 0 type lepto-
quarks couple to antiquarks in the s-channel and quarks in the u-channel, while |F | = 2 type
leptoquarks couple to quarks in the s-channel and antiquarks in the u-channel (see fig. 1).
If the leptoquark mass is much larger than the center of mass energy, MLQ ≫

√
s, the

momentum dependence of the leptoquark propagator can be neglected, effectively shrinking
the partonic interaction to a four-fermion vertex. The cross section then depends only on
the ratio of the leptoquark couplings divided by the leptoquark mass. The total inclusive
cross section for e− + p → τ− + X with a single intermediate leptoquark is given (in the
limit of massless quarks and leptons) by [24]

σF=0 =
∑

α,β

s

32π

[

λ1αλ3β
M2

LQ

]2
{
∫

dxdy xqα (x, xs) f (y) +

∫

dxdy xqβ (x,−u) g (y)

}

,

σ|F |=2 =
∑

α,β

s

32π

[

λ1αλ3β
M2

LQ

]2
{
∫

dxdy xqα (x, xs) f (y) +

∫

dxdy xqβ (x,−u) g (y)

}

.

(3.1)

The functions f and g are defined in eq. (3.2).

f (y) =

⎧

⎨

⎩

1/2 (scalar)

2 (1− y)2 (vector)
, g (y) =

⎧

⎨

⎩

(1− y)2 /2 (scalar)

2 (vector)
(3.2)
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y-dependence can 
distinguish scalar and vector 

leptoquarks

parameterization classifies the LQs into 14 di↵erent types according to their spin (scalar or vector), fermion number
F=3B+L (0 or ±2), chiral couplings to leptons (left-handed or right-handed), SU(2)L representation (singlet, doublet,
or triplet), and U(1)Y hypercharge.

In the region where the LQ mass MLQ �
p

s, the CLFV process is mediated via a contact interaction. In this
approximation, for an electron beam, the cross-section for e

�
N ! ⌧� + X takes the form:

�e
�

p

F=0 =
X

↵,�

s

32⇡

�1↵�3�

M
2
LQ

�2⇢ Z
dx

Z
dy xq̄↵(x, xs) f (y) +

Z
dx

Z
dy xq�(x,�u)g(y)

�
, (21)

�e
�

p

|F|=2 =
X

↵,�

s

32⇡

�1↵�3�

M
2
LQ

�2⇢ Z
dx

Z
dy xq↵(x, xs) f (y) +

Z
dx

Z
dy xq̄�(x,�u)g(y)

�
, (22)

where u = x(y�1)s and for a scalar LQ f (y) = 1/2, g(y) = (1�y)2/2 and for a vector leptoquark f (y) = 2(1�y)2, g(y) =
2. The lepton-quark-LQ couplings �i j are assumed to be real and the first and second indices denote the lepton and
quark generations respectively. In the above expressions for the cross section, the first and second terms arise from an
s-channel and u-channel LQ-exchange respectively. Similarly, for a positron beam, the cross section for e

+
N ! ⌧++X

takes the form:

�e
+

p

F=0 =
X

↵,�

s

32⇡

�1↵�3�

M
2
LQ

�2⇢ Z
dx

Z
dy xq↵(x, xs) f (y) +

Z
dx

Z
dy xq̄�(x,�u)g(y)

�
, (23)

�e
+

p

|F|=2 =
X

↵,�

s

32⇡

�1↵�3�

M
2
LQ

�2⇢ Z
dx

Z
dy xq̄↵(x, xs) f (y) +

Z
dx

Z
dy xq�(x,�u)g(y)

�
. (24)

From the above expressions for the cross sections, we see that the s-channel process for an F=0 (|F|=2) LQ is larger
with a positron (electron) beam since it involves the parton distribution function of initial state quark as opposed to an
anti-quark. Thus, the positron and electron beams can be used to enhance the F=0 and |F|=2 LQ channels respectively.
The polarization of the electron and positron beams can be used to distinguish between LQs that couple to left-handed
electrons and right-handed positrons and those that couple to right-handed electrons and left-handed positrons. A wide
kinematic range allows distinguishing between scalar and vector LQs through the di↵erence in the y-dependence of
the corresponding cross sections. Furthermore, depending on the couplings and electroweak quantum numbers, the
production of LQ states might be dominated via lepton scattering from an u-quark (“eu” LQ) or a d-quark (“ed” LQ)
within the nuclear target. A comparison of cross sections between a proton and deuteron target can help distinguish
between these LQ states. We summarize these points below:
• electron vs. positron beams: distinguish between F=0 and |F|=2 LQs
• polarized electron/positron beams: distinguish between left-handed and right-handed LQs
• wide kinematic range: distinguish between scalar and vector LQs.
• proton vs. deuteron targets: distinguish between “eu” and “ed” LQs.

A more detailed analysis of these points to distinguish between various LQ states can be found in [20]. An updated
analysis corresponding the EIC machine parameters is needed in order to further quantify these ideas.

As an example, Figure 2 illustrates the use of polarized electron and positron beams to distinguish between the
S

R
0 (|F|=2) and S

L
1/2 (F=0) scalar LQ states. The dominant partonic s-channel production process for these LQs are

e
�
R
uR ! S

R
0 and e

+
R
uR ! S

L
1/2. Thus, one expects a larger cross section for the S

R
0 (S L

1/2) LQ states in the case of an
electron (positron) beam with right-handed polarization. In Figure 2, we plot the cross section (

p
s = 90 GeV) for the

production of S
R
0 (S L

1/2) states as a function the variable z ⌘ �1↵�3�/M2
LQ

divided by the corresponding HERA limit
[16, 17]. Thus, z = 1 corresponds to the ratio �1↵�3�/M2

LQ
precisely at the HERA limit, yielding the largest allowed

cross section. We choose ↵ = � = 1, corresponding to the contribution from first generation quarks. The most stringent
limit in this case comes from the ⌧! e⇡ process, yielding �11�31/M2

LQ
< 0.4 TeV�2 [16] for both S

R
0 and S

L
1/2. Thus,

in terms of the z variable one obtains identical cross sections for S
R
0 with right-handed electron (left-handed positron)

beams and S
L
1/2 with right-handed positron (left-handed electron) beams. The dotted lines in Figure 2 correspond to

the cross sections for unpolarized (Pe = 0) lepton beams. The bands correspond to the linear variation of the cross
section with the respective lepton beam polarization, �(Pe) = (1± Pe)�(Pe = 0), due to the chiral lepton couplings of
the LQs. The bands correspond to the lepton beam polarization Pe being varied between [-80%,80%]. Thus, we see
that the complementary use of polarized electron and positron beams can be e↵ective in constraining the contribution
from di↵erent LQs or di↵erent mechanisms that might contribute to CLFV.
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• The tree level cross section using a positron beam for the F=0 and F=2 LQ channels:

• Electron and positron beams can be used to distinguish between different LQ channels.

• Kinematic information can be used to distinguish between scalar and vector LQ channels:



Leptoquarks: Polarized Lepton and Nuclear (p,D) 

• Different nuclear targets (p vs D) can help untangle different leptoquark states (“eu” vs “ed” LQs). 

8Julia Furletova

Leptoquarks at EIC
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● High luminosity (~100-1000 higher then HERA)
              HERA: L~1030-31cm-2s-1 (0.5 fb-1)
              EIC: L~1034cm-2s-1 (>50 fb-1)
● Electron and positron beam will probe different types of 

Leptoquarks
  -electron-proton collisions, mainly F=2 LQs prodused
  -positron-proton collisions, mainly F=0 LQs prodused

●  eD (deuterium) vs ep collisions
● LQs are chiral particles, gain in sensitivity due to polarised beams

• The chiral structure can be further unraveled through asymmetries involving both polarized lepton 
and nuclear beams.

is possible are given by the domains I+II. In domain I no effect will appear on the APC ’s
nor B’s and one misses the flavor separation. In the domain II it is possible to identify
the nature of the LQ without ambiguity.

4 Conclusion

Concerning the chances of discovery of Leptoquark states in the future HERA program
(with a high integrated luminosity), we have seen that there are still some windows that
are not covered by present data, in particular in the real domain (M <

√
s). Measure-

ments of the integrated unpolarized cross section in NC processes, at the highest possible
energy, should present the best opportunity. At this stage, polarized beams would not
yield better results.
Our purpose was mainly to explore the possibilities of disentangling the various LQ mod-
els. We present in Fig. 8 a schematic view of what can be done from the precise mea-
surements of the various observables we have discussed.
The first two steps are well known : with unpolarized e− and e+ beams it is easy to get in
the same time the separation between scalars and vectors (from the y distributions) and
between F = 0 and F = 2 LQs (from dσ±/dQ2).

The next steps are more difficult to perform. However, it is mandatory to try to
pin down the chiral structure of a newly discovered LQ-like particle. For example it is
worth recalling here that, due to SUSY, the R-parity breaking squarks have universal
left-handed couplings to leptons.

We have shown that polarization of the lepton beam should yield this information
thanks to the precise measurement of AL in both e− and e+ collisions. At this step the
polarization of the proton beams is not necessary. Note also that the sensitivities of the
PV asymmetry and of the unpolarized cross sections are comparable. This means that, if
polarized lepton beams are available in the same run, as soon as a LQ is discovered in e+

or e− collisions (via dσ/dQ2), one gets almost simultaneously his scalar or vector nature
(via dσ/dy) and the chiral structure of its couplings (via AL) .
Now, the next step is to try to get the flavor separation within the remaining classes of
models, which is the most difficult task. Indeed, CC processes with unpolarized beams
do not seem to be sufficient to fulfill this program, as long as ”neutron” beams, through
the use of ionized Deuterium or 3He atoms, are not available. On the other hand, the
behaviours of the polarized valence quark distributions ∆u and ∆d in a polarized proton
should allow to do this job. In the case of scalar LQs, measuring the PC double spin asym-
metries is sufficient. In the case of the remaining vectors, it is necessary to measure some
polarized charge asymmetries to obtain the separation at the same level of sensitivity. In
both cases, the price to pay is a proton beam with a high degree of polarization (P = 70%).

We feel that it was important to get an answer to the following question : are both
(lepton and proton) polarizations mandatory to completely disentangle the various LQ
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models present in the BRW lagrangians ? According to our analysis the answer is yes.
This conclusion holds certainly also for the TESLA×HERA project.

Finally, if we relax the working assumptions i-iv (see Section 1), the LQs can have a
more complex structure and the analysis should be less easy. In this case, like in the more
general context of Contact Interactions [35], the use of additional asymmetries, that one
can also define with lepton plus proton polarizations, should be very useful.

Moreover, polarized electron-neutron collisions could be performed with polarized 3He
beams : this option has been seriously considered in the framework of the RHIC-Spin pro-
gram at Brookhaven and also at HERA [22]. This could be the final goal of an ambitious
polarization program at HERA.
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Figure 8: Schematic view for LQ identification.
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-P.Taxil, E. Tugcu, J.M. Virey (Eur.Phys.J. C14 (2000) 165-168)  



[P.Taxil, E. Tugcu, J.M. Virey]   

Leptoquarks: Polarized Lepton and Nuclear (p,D) Beams

•  Various asymmetries involving both polarized leptons and p,D beams have been proposed to 
identify the nature of LQ states. 

metries. Indeed, since the LQs are chiral one can expect that the most important effects
will appear on the Parity Violating (PV) spin asymmetries which can be defined when
both beams are polarized or when there is lepton polarization only. Parity Conserving
(PC) spin asymmetries will also be of great help as well as some charge asymmetries.

We will only define and discuss below the quantities which turned out to be the best
ones to pin down the nature of the LQ and which have the stronger sensitivity to this
kind of new physics. We will start by recalling the definitions of the relevant asymmetries.

If one beam is polarized (in practice, the lepton beam) one can define the single-spin
parity-violating longitudinal asymmetry AL(et) : (t = ± according to the electric charge
of the lepton)

AL(e
t) =

σ−
t − σ+

t

σ−
t + σ+

t

, (4)

where σhe

t ≡ (dσt/dQ2)he and he is the helicity of the lepton. In addition, when both
lepton and proton beams are polarized, some double-spin PV asymmetries can be defined
[33]. For instance APV

LL is defined as :

APV
LL (e

t) =
σ−−
t − σ++

t

σ−−
t + σ++

t

, (5)

where σ
hehp

t ≡ (dσt/dQ2)hehp, and he, hp are the helicities of the lepton and the proton,
respectively.

On the other hand, with longitudinally polarized beams, one needs two polarizations to
define some parity-conserving (PC) asymmetries APC

LL . These well-known quantities have
been extensively used in polarized DIS to determine the spin structure of the nucleon [34].
Here we will use the following :

APC
1 =

σ−−
− − σ−+

−

σ−−
− + σ−+

−

, (6)

APC
2 =

σ++
− − σ+−

−

σ++
− + σ+−

−

, (7)

and

APC
3 =

σ++
+ − σ+−

+

σ++
+ + σ+−

+

, (8)

Finally, since e− as well as e+ (polarized) beams will be available at HERA, one
can define a large set of (polarized) charge asymmetries [35]. Among this set, only the
following turned out to be relevant for our purpose :

BU =
σ−−
− − σ++

− + σ++
+ − σ−−

+ + σ−+
− − σ+−

− + σ−+
+ − σ+−

+

σ−−
− + σ++

− + σ++
+ + σ−−

+ + σ−+
− + σ+−

− + σ−+
+ + σ+−

+

=
σ−0
− − σ+0

− + σ0+
+ − σ0−

+

σ−0
− + σ+0

− + σ0+
+ + σ0−

+

,

(9)

9

metries. Indeed, since the LQs are chiral one can expect that the most important effects
will appear on the Parity Violating (PV) spin asymmetries which can be defined when
both beams are polarized or when there is lepton polarization only. Parity Conserving
(PC) spin asymmetries will also be of great help as well as some charge asymmetries.

We will only define and discuss below the quantities which turned out to be the best
ones to pin down the nature of the LQ and which have the stronger sensitivity to this
kind of new physics. We will start by recalling the definitions of the relevant asymmetries.
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+

σ0−
− + σ0+

− + σ−0
+ + σ+0

+

,

(10)
where the index 0 means unpolarized and the order he, hp has been respected. Note
that both lepton and proton polarizations are necessary if one wants to measure these
quantities.

3.2 Unpolarized case

We consider first the case of neutral currents.
If a LQ is present in an accessible kinematic range at HERA, it will be discovered from the
analysis of dσt/dQ2 which have the greatest ”discovery” potential. However, if one starts
trying to pin down the various models, both dσt/dy and dσt/dQ2 have to be analyzed
simultaneously.

As is well known [4] the use of e− or e+ beams allows the separation of the 14 models
of LQs into two classes according to the value of the fermionic number F. This comes
from the dominant (LQ mediated) interaction between a valence quark and an e− (F =
2) or an e+ (F = 0).

Hence, a deviation from dσSM
− /dQ2 indicates the class (Stype or Vtype), whereas a de-

viation from dσSM
+ /dQ2 corresponds to the class (Rtype or Utype).

Then, the y dependence, which is obtained from the two dσt/dy, is the best way to
discriminate between a scalar and a vector interaction. Indeed, the SM background dis-
plays dσt/dy ∼ 1/y2 when the pure vector LQ case goes as y and the pure scalar LQ is
constant in y. It is straightforward to obtain these behaviours from the formulas given in
[4, 3] and in the Appendix.
We illustrate this pattern in Fig. 3 for two different choices of scalar and vector LQs, with
parameters allowed by the present limits. Since the separation is easy, in the following we
will treat scalar and vectors as two distinct species. Now the LQ models are separated in
four distinct classes :(Stype), (Rtype), (Vtype) and (Utype).

On the other hand, Charged Current (CC) processes could in principle allow to go
further into the distinction procedure. We have seen previously that only S1L and S3 for
scalars, U1L and U3 for vectors, can induce a deviation from SM expectations (if we do
not assume LQs mixing1). This means that the analysis of σCC

e−p allows to split the (Stype)

class into (S1L,S3) and (S1R,S̃1), while the (Utype) class is split into (U1L,U3) and (U1R,Ũ1).
In addition, it appears that when LQ exchange interferes with W exchange, S1L and

S3 display some opposite patterns (see Appendix), and this is also the case between U1L

and U3. However this interference term is too small to be measurable from unpolarized
1We refer to [36] for a discussion on scalar LQs mixings.

10

models present in the BRW lagrangians ? According to our analysis the answer is yes.
This conclusion holds certainly also for the TESLA×HERA project.

Finally, if we relax the working assumptions i-iv (see Section 1), the LQs can have a
more complex structure and the analysis should be less easy. In this case, like in the more
general context of Contact Interactions [35], the use of additional asymmetries, that one
can also define with lepton plus proton polarizations, should be very useful.

Moreover, polarized electron-neutron collisions could be performed with polarized 3He
beams : this option has been seriously considered in the framework of the RHIC-Spin pro-
gram at Brookhaven and also at HERA [22]. This could be the final goal of an ambitious
polarization program at HERA.
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•  This analysis should be revisited in the context of the EIC.



Summary of Key Criteria to Distinguish Leptoquark States 

• Electron vs. positron beams: distinguish between F=0 and F=2 LQs

• Polarization of lepton beams: distinguish between left-handed (L) and right-handed (R) LQs

• Wide kinematic range: distinguish between scalar (S) and vector (V) LQs

• Proton vs Deuteron targets: distinguish between “eu" and “ed” LQs



CLFV limits from HERA

• The H1 and ZEUS experiments have searched for the CLFV 
process and set limits: 

1

• SUSY (RPV)

• SU(5), SO(10) GUTS

• Left-Right symmetric models

• Randall-Sundrum Models

• LeptoQuarks

• ...

ep ! ⌧X (1)

(rare CLFV decays)

(µ ! e conversion in nuclei) (2)

µ ! e� (3)

⌧ ! e� (4)

⌧ ! µ� (5)

µ ! 3e (6)

⌧ ! 3e (7)

µ+N �! e+N (8)

r⇥ v = �2x ẑ (9)
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• High luminosity EIC could surpass the best limits set by HERA :



CLFV mediated by Leptoquarks

beyond-the-SM symmetry group. In addition to the interaction arising from eq. (2.3), there
can exist an anomalous magnetic moment coupling of the leptoquark to the photon, so the
full interaction Lagrangian is

L(vector)
LQ,γ = −ieQLQ

([

V†
µνV

ν − VµνV
ν†
]

Aµ − (1− κ) V †
µVνF

µν
)

(2.6)

where the leptoquark field strength tensor Vµν is given by

Vµν ≡ ∂µV ν − ∂νV µ (2.7)

and F µν is the usual photon field strength tensor. If the leptoquarks are gauge bosons (as
in the case of some SU(5) GUTs, e.g.), then κ = 0 and the resulting photon interaction is a
three-gauge-boson vertex, the result of spontaneous symmetry breaking of the higher gauge
group containing both the leptoquarks and the photons to U(1)EM . (Also, if the leptoquarks
are gauge bosons, eq. (2.3) is replaced by the appropriate kinetic term for the gauge bosons
of the larger symmetry group.) This question of the gauge nature of the vector leptoquarks
will have further implications for our analysis, particularly in the calculation of the τ → eγ
limits (see section IV). Finally, the electric charges of the scalar and vector leptoquarks
which appear in the photon interaction terms are easily determined from eq. (2.1) (also, see
Table 1 in [23]).

III. CROSS SECTION CALCULATIONS FOR e → τ

Electron to tau conversion in an e−p deep inelastic scattering process is the LFV(1,3) sig-
nal at the EIC which we consider in our analysis. In the BRW leptoquark parameterization,
such a process occurs via tree level partonic interactions. In e−p collisions, F = 0 type lepto-
quarks couple to antiquarks in the s-channel and quarks in the u-channel, while |F | = 2 type
leptoquarks couple to quarks in the s-channel and antiquarks in the u-channel (see fig. 1).
If the leptoquark mass is much larger than the center of mass energy, MLQ ≫

√
s, the

momentum dependence of the leptoquark propagator can be neglected, effectively shrinking
the partonic interaction to a four-fermion vertex. The cross section then depends only on
the ratio of the leptoquark couplings divided by the leptoquark mass. The total inclusive
cross section for e− + p → τ− + X with a single intermediate leptoquark is given (in the
limit of massless quarks and leptons) by [24]

σF=0 =
∑

α,β

s

32π

[

λ1αλ3β
M2

LQ

]2
{
∫

dxdy xqα (x, xs) f (y) +

∫

dxdy xqβ (x,−u) g (y)

}

,

σ|F |=2 =
∑

α,β

s

32π

[

λ1αλ3β
M2

LQ

]2
{
∫

dxdy xqα (x, xs) f (y) +

∫

dxdy xqβ (x,−u) g (y)

}

.

(3.1)

The functions f and g are defined in eq. (3.2).

f (y) =

⎧

⎨

⎩

1/2 (scalar)

2 (1− y)2 (vector)
, g (y) =

⎧

⎨

⎩

(1− y)2 /2 (scalar)

2 (vector)
(3.2)
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- all LQs
- all combinations of quark generations (no 

top quarks)
- degenerate masses assumed for LQ 

multiplets

[S. Chekanov et.al (ZEUS), A.Atkas et.al (H1)]

• Cross-section for                        takes the form:

1

• SUSY (RPV)

• SU(5), SO(10) GUTS

• Left-Right symmetric models

• Randall-Sundrum Models

• LeptoQuarks

• ...

ep ! ⌧X (1)

(rare CLFV decays)

(µ ! e conversion in nuclei) (2)

µ ! e� (3)

⌧ ! e� (4)

⌧ ! µ� (5)

µ ! 3e (6)

⌧ ! 3e (7)

µ+N �! e+N (8)

r⇥ v = �2x ẑ (9)



• Comparison of HERA 
limits with limits from other 
rare CLFV processes.  

    

[S.Davidson, D.C. Bailey, B.A.Campbell]

• HERA limits that are 
stronger are highlighted in 
yellow.

• HERA limits are generally 
better for couplings with 
second and third 
generations.

ep → τX H1 F = 2

Upper exclusion limits on λeqiλτqj/m
2
LQ (TeV−2)

for lepton flavour violating leptoquarks at 95% CL
SL
0 SR

0 S̃R
0 SL

1 V L
1/2 V R

1/2 Ṽ L
1/2qiqj

ℓ−U ℓ−U ℓ−D ℓ−U, ℓ−D ℓ−D ℓ−U, ℓ−D ℓ−U

ℓ+Ū ℓ+Ū ℓ+D̄ ℓ+Ū, ℓ+D̄ ℓ+D̄ ℓ+Ū, ℓ+D̄ ℓ+Ū

GF τ → πe τ → πe τ → πe τ → πe τ → πe τ → πe

1 1 0.3 0.06 0.06 0.01 0.03 0.01 0.03

1.6 1.8 2.6 1.0 1.1 0.7 0.8
K → πνν̄ τ → Ke K → πνν̄ K → πνν̄ τ → Ke

1 2 5.8 × 10−4 0.04 2.9 × 10−4 2.9 × 10−4 0.02

1.9 2.1 2.9 1.1 1.9 1.3 1.5
B → τ ē Vub B → τ ē B → τ ē

1 3 ∗ ∗ 0.07 0.3 0.03 0.03 ∗
3.0 1.3 2.2 2.4

K → πνν̄ τ → Ke K → πνν̄ K → πνν̄ τ → Ke

2 1 5.8 × 10−4 0.04 2.9 × 10−4 2.9 × 10−4 0.02

2.7 2.7 3.5 1.4 1.2 0.7 0.9
τ → 3e τ → 3e τ → 3e τ → 3e τ → 3e τ → 3e τ → 3e

2 2 0.6 0.6 1.8 1.5 0.9 0.5 0.3

6.3 6.8 5.4 2.3 2.7 2.2 3.4
B → τ̄eX B → τ̄eX B → τ̄eX B → τ̄eX

2 3 ∗ ∗ 14.0 7.2 7.2 7.2 ∗
5.8 2.7 3.6 4.0

B → τ ē B → τ ē B → τ ē B → τ ē

3 1 ∗ ∗ 0.07 0.03 0.03 0.03 ∗
4.0 2.0 1.2 1.3

B → τ̄eX B → τ̄eX B → τ̄eX B → τ̄eX

3 2 ∗ ∗ 14.0 7.2 7.2 7.2 ∗
7.9 3.7 2.9 3.1
τ → 3e τ → 3e τ → 3e τ → 3e

3 3 ∗ ∗ 1.8 1.5 0.9 0.5 ∗
10.1 4.6 4.7 4.9

Table 4: Limits at 95% CL on λeqiλτqj/m
2
LQ for F = 2 leptoquarks (bold). The fermion pairs

considered in the analysis coupling to each LQ type are indicated in the column headings. The
SL
1 and V R

1/2 LQs couple to both u-type (U) and d-type (D) quarks [10]. The cases marked
with ’∗’ refer to scenarios involving a top quark. Combinations of i and j shown in the first
column denote the quark generation coupling to the electron and tau lepton respectively. In
each cell the first two rows show the process providing the most stringent limit from low energy
experiments. Highlighted H1 limits are more stringent than those from the corresponding low
energy experiment.
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[Deshpande, Faroughy, Gonderinger, Kumar,  Taneja]

• z=1 corresponds to evaluating the cross section at the HERA limit.

• EIC will be sensitive to cross sections with z<1, thereby improving upon HERA limits.
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Figure 6.6. The e → τ cross section for the leptoquark SR
0 plotted as a function of z, defined to

be the ratio λ1αλ3β/M2
LQ scaled by the HERA limit. A cross section of 0.001 fb, corresponding to

order 1 events with 1000 fb−1 integrated luminosity, is indicated with a gray dashed line. The cross
section is plotted for the different quark generation combinations, (αβ). Shown here are the quark
flavor-diagonal contributions with α = β. The vertical dashed lines indicate the range of these ratios
to which the Super-B experiments may be maximally sensitive from τ → eγ searches.
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Figure 6.7. As for figure 6.6, but shown here are the quark flavor-off-diagonal contributions with
α ≠ β. No τ → eγ limits exist in this case.
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Figure 6.8. Feynman diagrams showing the leptoquark loops contributing to the τ → eγ∗ process.
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[M.Gonderinger, M.Ramsey-Musolf]

• With1000 fb-1 of integrated luminosity, the EIC could improve on HERA limits by a factor of 
between 10 and 200, depending on the specific LQ state.
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� 𝜏 → 𝑒𝛾  decays via leptoquark loops: 
 
 
 
 
 
 
 

� These diagrams are proportional to 𝝀𝟏𝜶𝝀𝟑𝜷/𝑴𝑳𝑸
𝟐  with 𝛼 = 𝛽   

� 𝜏 → 𝑒𝛾  limits are only relevant for these “quark flavor-diagonal” cases 
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LEPTOQUARK LOOPS Leptoquark Mediated CLFV(1,3) Decays

• Leptoquarks can also mediate the rare decay:
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• These diagrams are also proportional to the combination:

beyond-the-SM symmetry group. In addition to the interaction arising from eq. (2.3), there
can exist an anomalous magnetic moment coupling of the leptoquark to the photon, so the
full interaction Lagrangian is

L(vector)
LQ,γ = −ieQLQ

([

V†
µνV

ν − VµνV
ν†
]

Aµ − (1− κ) V †
µVνF

µν
)

(2.6)

where the leptoquark field strength tensor Vµν is given by

Vµν ≡ ∂µV ν − ∂νV µ (2.7)

and F µν is the usual photon field strength tensor. If the leptoquarks are gauge bosons (as
in the case of some SU(5) GUTs, e.g.), then κ = 0 and the resulting photon interaction is a
three-gauge-boson vertex, the result of spontaneous symmetry breaking of the higher gauge
group containing both the leptoquarks and the photons to U(1)EM . (Also, if the leptoquarks
are gauge bosons, eq. (2.3) is replaced by the appropriate kinetic term for the gauge bosons
of the larger symmetry group.) This question of the gauge nature of the vector leptoquarks
will have further implications for our analysis, particularly in the calculation of the τ → eγ
limits (see section IV). Finally, the electric charges of the scalar and vector leptoquarks
which appear in the photon interaction terms are easily determined from eq. (2.1) (also, see
Table 1 in [23]).

III. CROSS SECTION CALCULATIONS FOR e → τ

Electron to tau conversion in an e−p deep inelastic scattering process is the LFV(1,3) sig-
nal at the EIC which we consider in our analysis. In the BRW leptoquark parameterization,
such a process occurs via tree level partonic interactions. In e−p collisions, F = 0 type lepto-
quarks couple to antiquarks in the s-channel and quarks in the u-channel, while |F | = 2 type
leptoquarks couple to quarks in the s-channel and antiquarks in the u-channel (see fig. 1).
If the leptoquark mass is much larger than the center of mass energy, MLQ ≫

√
s, the

momentum dependence of the leptoquark propagator can be neglected, effectively shrinking
the partonic interaction to a four-fermion vertex. The cross section then depends only on
the ratio of the leptoquark couplings divided by the leptoquark mass. The total inclusive
cross section for e− + p → τ− + X with a single intermediate leptoquark is given (in the
limit of massless quarks and leptons) by [24]

σF=0 =
∑
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s

32π

[

λ1αλ3β
M2
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]2
{
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}
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]2
{
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dxdy xqα (x, xs) f (y) +

∫

dxdy xqβ (x,−u) g (y)
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.

(3.1)

The functions f and g are defined in eq. (3.2).

f (y) =
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⎨

⎩

1/2 (scalar)

2 (1− y)2 (vector)
, g (y) =

⎧

⎨

⎩

(1− y)2 /2 (scalar)

2 (vector)
(3.2)

5

but only for 

1

• SUSY (RPV)

• SU(5), SO(10) GUTS

• Left-Right symmetric models

• Randall-Sundrum Models

• LeptoQuarks

• ...

↵ = � (1)

⌧ ! e� (2)

z =
(�1↵�3�)/(M2

LQ)

[(�1↵�3�)/(M2

LQ)]HERAlimit

(3)

LYukawa = ��
ij
U Q̄

i
L✏�

⇤
u
j
R � �

ij
DQ̄

i
L�d

j
R � �

ij
e L̄

i
L�e

j
R + h.c. (4)

p
s ⇠ 140 GeV (5)

L ⇠ 100� 200 fb�1 (6)

(7)

sin ✓13 (8)

Br(µ ! e�)

Br(⌧ ! e�)
=

���
�µe

�⌧e

���
2

(9)

=
���
sin ✓sol cos ✓sol �m

2

sol
± sin ✓13ei��m

2

atm

� sin ✓sol cos ✓sol �m
2

sol
± sin ✓13ei��m

2

atm

���
2

(10)

⇤LN � ⇤LFV (11)

(“quark flavor-diagonal case”)



S0
R

0.001 0.005 0.010 0.050 0.100 0.500 1.000

10!6

10!4

0.01

1

z

Σ
!f

b
"

0.001fb

!33"

!22"

!11"

Figure 6.6. The e → τ cross section for the leptoquark SR
0 plotted as a function of z, defined to

be the ratio λ1αλ3β/M2
LQ scaled by the HERA limit. A cross section of 0.001 fb, corresponding to

order 1 events with 1000 fb−1 integrated luminosity, is indicated with a gray dashed line. The cross
section is plotted for the different quark generation combinations, (αβ). Shown here are the quark
flavor-diagonal contributions with α = β. The vertical dashed lines indicate the range of these ratios
to which the Super-B experiments may be maximally sensitive from τ → eγ searches.
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Figure 6.7. As for figure 6.6, but shown here are the quark flavor-off-diagonal contributions with
α ≠ β. No τ → eγ limits exist in this case.
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Figure 6.8. Feynman diagrams showing the leptoquark loops contributing to the τ → eγ∗ process.
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Figure 6.7. As for figure 6.6, but shown here are the quark flavor-off-diagonal contributions with
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• Vertical dashed lines and horizontal arrows indicate the range of limits (“totalitarian” vs 
“democratic”) from CLFV tau decay limits projected at Super-B.

Totalitarian: single quark flavor dominates loop

Democratic: all flavors contribute equally
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Figure 6.6. The e → τ cross section for the leptoquark SR
0 plotted as a function of z, defined to

be the ratio λ1αλ3β/M2
LQ scaled by the HERA limit. A cross section of 0.001 fb, corresponding to

order 1 events with 1000 fb−1 integrated luminosity, is indicated with a gray dashed line. The cross
section is plotted for the different quark generation combinations, (αβ). Shown here are the quark
flavor-diagonal contributions with α = β. The vertical dashed lines indicate the range of these ratios
to which the Super-B experiments may be maximally sensitive from τ → eγ searches.
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Figure 6.8. Feynman diagrams showing the leptoquark loops contributing to the τ → eγ∗ process.

423

• More stringent limit comes from “democratic” scenario.

• Note that CLFV tau decay limits do not apply to the “quark 
off-diagonal” case. 
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FIGURE 2. Production cross section (
p

s = 90 GeV) for the S
R
0 and S

L
1/2 LQ states using polarized electron and positron beams as

a function of the variable z = �11�31/M2
LQ

. The blue (red) dotted line gives the unpolarized, Pe = 0, cross section for S
R
0 using an e

�

(e+) beam or S
L
1/2 using an e

� (e+) beam. The blue and red bands correspond to the variation of the respective cross section when
the beam polarization is varied between [-80%,80%] and can be used to distinguish between di↵erent LQ states. For example, the
top solid blue line corresponds to the cross section for S

R
0 using a 80% right-polarized electron beam or S

L
1/2 using a 80% right-

polarized positron beam. Similarly, the bottom solid red line corresponds to the cross section for S
R
0 using a 20% left-polarized

positron beam or S
L
1/2 using a 20% left-polarized electron beam.

Conclusions

A polarized positron beam can play an important role in the search for physics beyond the SM at the Intensity/Precision
Frontier. It will complement the e↵orts of the 12 GeV JLAB program and the EIC in precision measurements of the
weak neutral couplings to constrain new physics scenarios and distinguishing between them, testing the structure of
the charged current interactions, searching for charged lepton flavor violation, and dark photon searches.
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Lepton Beam Polarization

• EIC sensitivity to CLFV(1,3) to specific LQ channels can be improved using polarized 
lepton beams.

Pe=[-80%,80%]

• In addition, polarized electron and positron beams can be used in conjunction to constrain 
specific LQ channels. 
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• Such a program physics is facilitated by:
• high luminosity  
• wide kinematic range
• range of nuclear targets
• polarized beams

EIC	&	Spin	Puzzle	
• Parton	helicity	distributions	are	sensitive	to	low-x	physics.	
• EIC	would	have	an	unprecedented	low-x	reach	for	a	spin	DIS	experiment,	

allowing	to	pinpoint	the	values	of	quark	and	gluon	contributions	to	
proton’s	spin:

• ΔG	and	ΔΣ are	integrated	over	x	in	the	0.001	<	x	<	1	interval.
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Conclusions

• Leptoquarks 
• R-parity violating Supersymmetry
• Excited leptons (compositeness)
• Leptophobic Z’s
• Charged Lepton Flavor Violation (CLFV)
• ...

• The EIC can play an important role in searching/constraining various new physics scenarios that 
include:

• New physics can be constrained through:

• Precision measurements of the electroweak parameters 
• Direct searches for charged lepton flavor violation CLFV(1,3)

• Addition of a positron beam can provide additional opportunities.

• See talk by Jinlong Zhang for simulation studies of CLFV at the EIC.


